

Hot Melt Extrusion and 3D Printing of Thermoplastic Lead-Free Piezocomposite for Environmentally Safer Sensing Applications

Presenter

Gopi Kompelli

2nd Year Ph.D. student KTU Institute of Mechatronics gopi.kompelli@ktu.edu **Co-authors**

Rolanas Daukševičius

Marius Rimašauskas

Arūnas Kleiva

Kaunas University of Technology

27th International Conference "Mechanika-2023"

Introduction

Research focus:

- Lead-free piezo-polymer/ceramic composite (piezocomposite) filaments for 3D printing.
- Environmentally safer solvent-free manufacturing method based on melt compounding & extrusion
 exclusion of solvents that pose risks to human health and environment.
- 3D printing (fused filament fabrication) of flexible and durable piezoelectric sensors and energy harvesters.

Research alignment with key European priorities in R&D of functional/advanced materials:

- EC "The Materials 2030 Roadmap" (2023):
 - \checkmark Highlights the potential of 3D printing to revolutionize industries.
 - Priority areas "Advanced materials for additive manufacturing in health applications",
 "Development of efficient sensors".
- EU "Chemicals Strategy for Sustainability Towards a Toxic-Free Environment" (2020) → key commitment of the Green Deal → aimed at achieving a toxic-free environment.

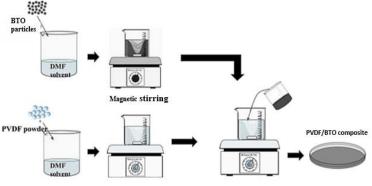

3D printable piezoelectric composites

- Piezocomposite: Combination of thermoplastic piezopolymer matrix (PVDF-HFP) & lead-free piezoceramic filler particles (barium titanate-BTO).
- Advantages over conventional materials (PZT): improved performance & functionality (e.g. high flexibility → durability).
- Benefits of 3D printing: larger design freedom → possibility to manufacture piezo-devices having advanced structural configurations (e.g. stretchable, conformable).
- Applications: mechanical sensors or energy harvesters (wearable or implantable smart devices, environment monitoring devices, etc.).

ktu

Custom-made piezocomposite filament

3D printed PVDF-HFP/BTO sample


Research motivation

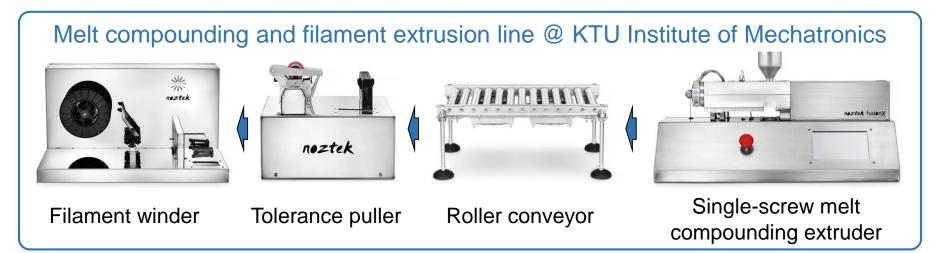
Piezoelectric composites are mainly manufactured using:

- Solvent-based techniques, e.g. solution processing/casting ⇒ widely used in research.
- Solvent-free techniques, e.g. dry-mix preparation + hot melt extrusion
 popular in industrial applications.

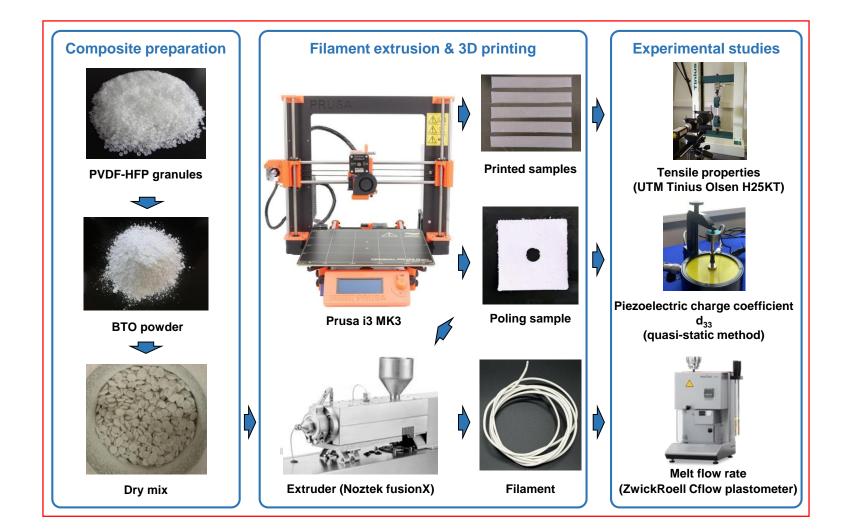
Limitations of solution processing:

- Some organic solvents (e.g. DMF) are highly toxic.
- Safer solvents (e.g. bio-based DMSO) still have potential health hazards (skin irritation, etc.) and may be harmful to environment.
- Higher clinical risks for piezoelectric medical devices (wearable, implantable).

*Shivanand M Chougule, Polymers and Polymer Composites, Vol. 30, 2022.


ktu

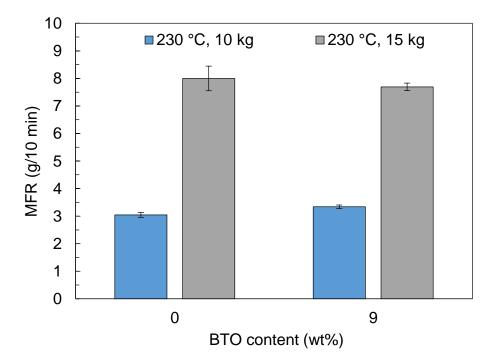
Research motivation


Advantages of solvent-free melt-based manufacturing (vs. solution processing):

- Possibly more efficient large-scale production, compatibility with widely used industrial processes (extrusion).
- More suitable for medical devices (no need to worry about residues of harmful solvents).

Research methodology

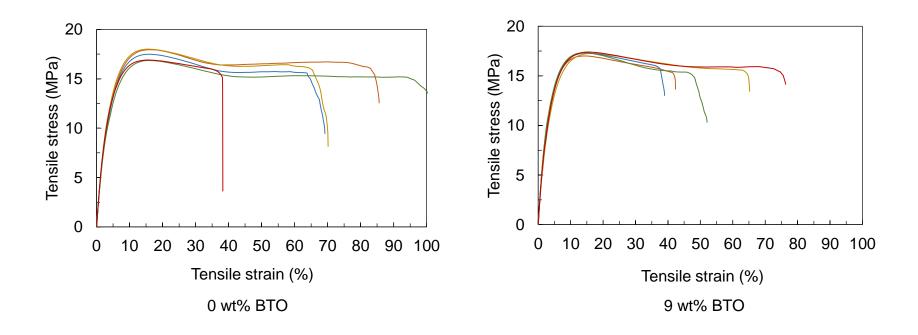
Process parameters for PVDF-HFP/BTO filament extrusion & 3D printing

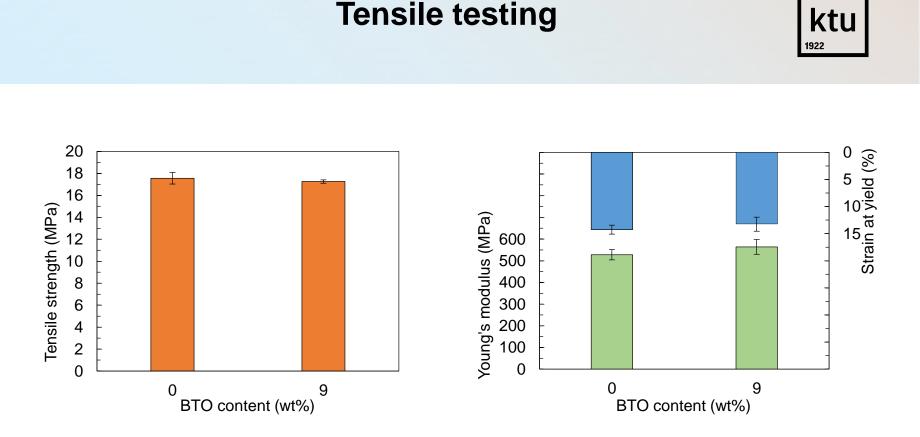


Extrusion settings	Value
Extrusion zone temperature	240 °C
Mixing zone temperature	220 °C
Nozzle diameter	1.3 mm
Motor speed	36 RPM
Cooling Type	Water cooling

3D printing settings	Value, description
Nozzle diameter, material type	0.8 mm, Vanadium nozzle
Nozzle temperature	260 °C
Bed temperature	70 °C
Printing speed	35 mm/sec
Raster angle	+45°/-45°
Layer thickness	0.1 mm
Infill ratio	100%
Printing time	8 min.

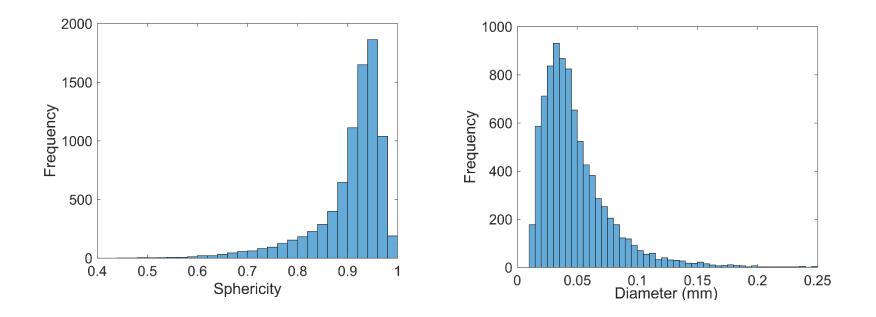
Experimental results for mass flow rate




 Slight reduction in MFR was observed with increasing BTO. It suggests that increase in BTO content may not affect the composite printability.

Tensile testing

- Stress-strain curves indicate ductile behaviour for both pristine PVDF-HFP and composite specimens.
- In all the test cases the nominal strain at break is fluctuating.

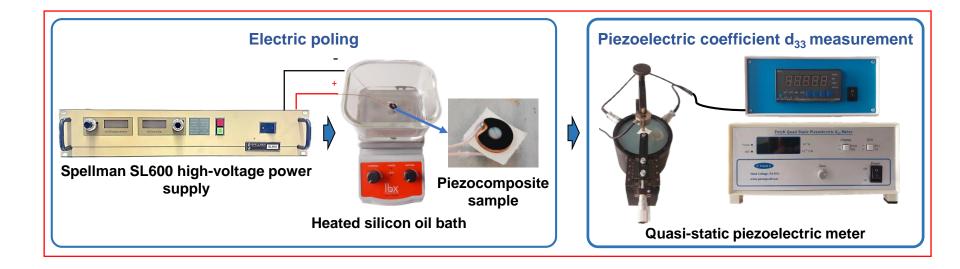

- BTO particles have not shown any significant impact on the mechanical properties of the composites.
- Tensile strength slightly decreases, and tensile modulus slightly increases with higher BTO, but the variation of average values are less than 6% in comparison to pristine PVDF-HFP specimens. 10

Results of X-ray microtomography ktu 1922 10⁴ 10³ Frequency 10² 10¹ 10⁰ 0.005 0.01 0.015 0.02 0 Volume (mm³)

9% BTO

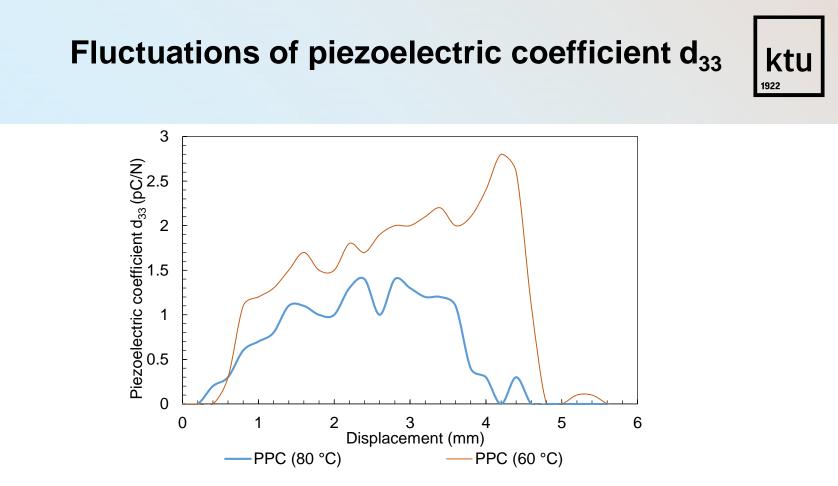
- Volume-frequency distributions indicate that agglomerates of the smallest volume predominate in the composite.
- The 3D visualizations of the filament indicate that the filler content was homogeneously dispersed.

Results of X-ray microtomography


 The size of agglomerates of filler content in piezocomposite are not significantly large, which is an advantageous result regarding composite printability.

ktu

1922


Electric poling and measurements of piezoelectric coefficient d₃₃

Parameters of electric poling (contact poling method):

- Voltage: 7 kV
- Duration: 4 hrs.
- Poling temperatures: 60 °C and 80 °C

- The highest piezoelectric coefficient values of piezocomposite (PPC).
 - ✓ At 60 °C poling temperature: 2.8 pC/N.
 - ✓ At 80 °C poling temperature: 1.4 pC/N.
- Poling of piezocomposite at 60 °C is more effective vs. poling at 80 °C.

Conclusions

- 1. Addition of BTO microparticles to PVDF-HFP matrix had minimal negative effect on tensile properties of 3D printed piezocomposite.
- 2. BTO particles were uniformly dispersed within the piezocomposite matrix.
- 3. Incorporation of BTO particles increased the piezoelectric coefficient of electrically poled piezocomposite.

Future research objectives:

- Development of multi-stage extrusion methodology (several compounding-extrusion cycles) to improve uniformity of filler dispersion, ensure more consistent printing process and achieve higher quality printed structures for more effective poling.
- Increasing filler content & changing piezoelectric filler type to enhance the piezoelectric properties of piezocomposite.
- Development of electric poling methodology (poling integrated into 3D printing).15

Thank you for your attention !

