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1. INTRODUCTION

2. BASIC FORMULATIONS OF THE PROBLEM

● Rotating discs are subject of many researches due to their huge application in rotating

machinery such as steam and gas turbine rotors, turbo generators, compressors, flywheels,

automotive braking systems, ship propellers and computer disc drives.

● Several authors have analyzed the creep behavior in composite, FGM and smart discs. For

composite and FGM discs:

● uniform thickness FGMEE disc rotates about z axis with a constant angular velocity

● cylindrical coordinate system (r, θ, z) is considered.

● The inner and outer radius are assumed to be a and b, respectively.

● The disc is considered to be subjected to hygrothermal field as well as electro-magnetic

potentials at inner and outer surfaces.

● symmetry and plane stress condition

● all material constants, are supposed to have the power-law distributions through the radial

direction as
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2.2 Basic equations of the FGMEE disc 

3. SOLUTION OF THE EQUATIONS
To find initial stresses, by ignoring creep strains:

Well-known Prandtl-Reuss equations relate the creep rates to the stresses and the material 

creep constitutive model as follows:

rates of stresses, electric potential and magnetic potential can be :

Material constants to be used can be found in Ref. [16, 19]. The inside and outside radius of the 

disc  is taken as a=0.1m and b=0.2m, respectively. 

4. NUMERICAL RESULTS AND DISCUSSIONS
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Authors Title

Singh and Ray the steady-state creep behavior of a rotating disc made of Al-SiC

composite

Gupta et al creep response of an isotropic FGM rotating disc with radial thermal 

gradient

Rattan et al. the creep behavior of an isotropic rotating disc made of particle reinforced 

FGM

Thakur et al. the creep progress in a disc with shaft having variable density in thermal 

environment
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2-1. Formulation of the hygrothermal field 
● The axisymmetric steady-state Fourier heat conduction and Fickian moisture diffusion equations

without source of heat and moisture for a disc are expressed as:
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the stress-strain relations can be written in the following form:  These boundary conditions can be 

expressed as: 

boundary conditions can be expressed as: 
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Figure 1 -

Validation of the 

results

Figure 2 - (a) 

Radial, (b) hoop 

and (c) equivalent 

creep stresses, (d) 

radial displacement 

redistribution 

during creep 

evolution

Figure 3 - Effect of 

grading index on the 

initial and creep (a) 

Radial, (b) hoop and 

(c) equivalent creep 

stresses, (d) radial 

displacement 

redistributions
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Figure 4 - Effect of

hygrothermal

loading on the initial

and creep (a)

Radial, (b) hoop

and (c) equivalent

creep stresses, (d)

radial displacement

redistributions

A functionally graded magneto-electro-elastic disc subjected to an axisymmetric multiphysical

loading is considered. The material constants are assumed to be power-law function of radius.

Applying the Prandtl-Reuss equations and Norton’s law, the time-dependent creep behavior of

the disc is analyzed. The following conclusions are found in the analysis:

 By serving the time, the radial stress rises, the absolute value of hoop stress decreases, the

equivalent stress decreases, and the outward radial displacement rises with decreasing rate.

 Rising in grading index leads to a reduction in the initial and creep radial stress together with a

reduction in both the initial hoop stress and initial equivalent stress. Also, it leads to a reduction

in the radial displacement for both initial and creep states.

 Rising in hygrothermal loading rises the radial stress, equivalent stress, and radial

displacement both for initial and creep cases.
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